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Abstract: This paper presents the modeling and μ synthesis for a vehicle active suspension system with a motor 
actuator, and analyses the performances of the active suspension with μ synthesis controller. Firstly, considering 
parameter uncertainties and unmodeled dynamics of suspension and motor actuator, an uncertain model has been 
built by linear fraction transformation. Secondly, a μ synthesis controller is designed for this uncertain system. 
Finally, frequency and time responses of passive and active suspensions have been obtained by simulation. For 
comparison purpose, an H∞ synthesis controller is proposed as well. The results show that the designed μ 
synthesis controller can improve ride comfort significantly compared with passive suspension, and is slightly 
worse than the H∞ synthesis controller in the sensitive frequency range for human. Both robust stability and 
robust performance of the perturbed system with the μ synthesis controller have been verified by μ analysis 
method, indicating significantly superiority to the H∞ synthesis controller. Additionally, the sensitiveness of 
uncertainties is demonstrated by illustrations of perturbed systems with parameter variations.  
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1 Introduction 
The aims of vehicle active suspension are to improve 
ride comfort by suppressing the vibrations from road 
roughness and provide good handling performance. 
Since random road excitation is actually a 
disturbance with limited energy band, the active 
suspension is designed to attenuate the road 
disturbance and achieve a trade-off between the 
conflicting suspension performance requirements. 
Additionally, the uncertainties of actual suspension 
system usually including parameter variations of 
suspension and unmodeled dynamics of actuator 
affect the suspension performances and even result in 
the instability of suspension system.  

Several controllers have been proposed to solve 
these problems of active suspension. The linear 
quadratic Gaussion (LQG) controller can attenuate 
road disturbance and measurement noise effectively 
[1-3], but it has a poor stability margin for uncertain 
system, i.e., system may be unstable in the presence 
of the uncertainties. Then, H∞ synthesis is used to 
deal with the uncertainties in an unstructured way 
and provides an optimal controller to ensure the 
robustness and required performances of suspension 
system [4-9]. In spite of this, the controller is too 
conservative [10]. In addition, another useful 
strategy, i.e., linear parameter varying (LPV) control 

combining H∞ synthesis with gain-scheduling 
approach [11-14], is applied to active suspension. 
LPV controller is gain-scheduled by the measured or 
estimated information of variable parameters to 
adapt to the variation of parameters. But it cannot 
deal with unmodeled dynamics of actuator. In a 
word, the above three controllers are undesirable for 
the perturbed system with the mixed uncertainties 
including parameter variations and unmodeled 
dynamics.  

In order to concern the mixed uncertainties and 
reduce the conservativeness of controller, the mixed 
μ synthesis controller is designed for active 
suspension [15, 16]. In the design process, μ 
synthesis controller applies the structured 
uncertainties, providing more detailed information of 
uncertainty characteristics, so that it can ensure 
robust stability and robust performance of the 
perturbed system. 

In this study, the research work is carried out on 
the developed suspension system which is featured 
by a type of DC motor actuator produced by SJTU 
[17-19]. Due to the special structure of ball 
screw-nut mechanism, the moments of inertia of 
rotor and nut can affect directly the performances of 
controlled suspension. Meanwhile, the unmodeled 
high-order dynamics of the motor’s control circuit 
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will also influence the system robustness 
significantly. Therefore, these two elements should 
be considered in the actuator model. In addition, the 
practical suspension system always varies with 
operation conditions. For instance, the sprung mass 
varies in a large range with the number of passengers, 
which may degrade the suspension performances. 
Other variable parameters, such as the stiffness of 
suspension spring and tire, the damping of actuator 
and motor constant, are also important to ensure the 
effectiveness of the control. Hence, the multiple 
parameter uncertainties should be taken into account 
in the suspension model. 

Based on the literature review of control 
strategies for vehicle active suspensions and the 
uncertain model with the mixed uncertainties 
including parameter uncertainties and unmodel 
dynamics, μ synthesis method is adopted to design 
the controller for the active suspension with motor 
actuator.  

In general, this paper focuses on the modeling 
of a vehicle active suspension system with a DC 
motor actuator and proposes a robust control with μ 
synthesis method to deal with the mixed 
uncertainties. For comparison purpose, an H∞

synthesis controller is also designed.  
The structure of the paper is as follows. Section 2 

presents the modeling of suspension system. Section 
3 discusses the robust control design based on μ 
synthesis and H∞ synthesis. And Section 4 shows the 
benefits of μ synthesis controller through 
performance comparison with passive suspension 
and H∞ synthesis controller. 
 
2 MODELING OF SUSPENSION 

AND MOTOR SYSTEM 
2.1 Quarter-vehicle Suspension Model 
The suspension model usually includes 
quarter-vehicle model, half vehicle model and full 
vehicle model [20]. Although the quarter-vehicle 
model with two degrees of freedom (2DOF) [1] is 
simple, it is effective to have a good understanding 
of suspension performances, such as ride comfort 
and road holding. The half vehicle model (4DOF) is 
used to evaluate pitch and bounce of vehicle body, 
especially with wheelbase preview control [2], while 
the full vehicle model (7DOF) [4] is more 
complicated and accurate to evaluate the attitude of 
vehicle body, i.e., pitch, roll and bounce. The results 
of the controllers for the quarter-vehicle model 
always coincide with that of the half/full vehicle 
models to a great extent, although it is accepted that 

further important practical problems appear when 
the control strategy is implemented on the half/full 
vehicle models. Hence, the quarter-vehicle 
suspension model is used as shown in Fig.1. fC  
represents the equivalent damper coefficient of motor 
actuator. The active force oF  is provided by motor 
actuator. The dynamic equations of the suspension 
system are as follows:  

( ) ( )b b s b w f b w om x K x x C x x F= − − − − +   (1) 
( ) ( ) ( )w w s b w f b w t w g om x K x x C x x K x x F= − + − − − −

 (2) 

 
Fig.1 Quarter-vehicle suspension model 

 
2.2 Motor Dynamic Model 
The developed prototype of motor actuator is 
composed of a three-phase permanent-magnet 
brushless DC motor, a ball screw and a nut, as shown 
in Fig.2. The rotor angular motion is converted to the 
ball screw linear motion by the nut. Thus, the motor 
output torque can be transferred to the active vertical 
force. Due to the high rotor speed during the 
suspension operation, the high frequency effects of 
the moment of inertia of rotor and nut should be 
considered. The dynamic model for the rotor and the 
nut is demonstrated in Fig.3. 

 

 
Fig.2 Prototype and schematic diagram of motor 

actuator 
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Fig.3 Dynamic model for rotor and nut 

According to the transformation of ball screw, 
the equation can be written as below: 

2 s

l

v
P
πω =     (3) 

where ω  is angular velocity, s b wv x x= −  is 
suspension stroke velocity and lP  is the lead of ball 
screw. The dynamic model can be expressed by the 
following equation: 

 ( )r n m oJ J T Tω+ = −    (4) 
where mT  is motor output torque and oT  is actual 
total output torque, and nJ  and rJ are moments of 
inertia of nut and motor rotor, respectively. The 
motor output torque can be calculated from motor 
control current i , i.e., 

 m TT K i=      (5) 
in which TK  is torque constant of motor. Then, the 
output force oF  from ball screw can be obtained as 

 2 o
o

l

TF
P
π

=     (6) 

From equations (3)~(6), the output force of 
motor actuator can be expressed as 

o d sF i I v= Φ −    (7) 

where 2 T

l

K
P
π

Φ = , 
( )2

2

4 r n
d

l

J J
I

P
π +

= . 

From (1), (2) and (7), the dynamic equations of 
suspension model are as follows: 

( ) ( )

( ) ( )

1
b w s b w

b w d w d

w f b w w d t w g

x m K x x
m m I m I

m C x x m i I K x x

= ⎡− −⎣+ +

− − + Φ − − ⎤⎦

 (8)

( ) ( ) ( )

( ){
( ) ( ) ( )}

1

1 2

1 2

1
( )

w s b w f b w t w g

s b w
b w d w d

f b w d t w g

x K x x C x x i K x x

K x x
m m I m I

C x x i I K x x

γ

γ γ

γ γ

= ⎡ − + − −Φ − − ⎤⎣ ⎦

+ − ⎡ −⎣+ +

+ − −Φ ⎤+ − −⎦
(9) 

where 1
1

w dm I
γ =

+
, 2 w dm Iγ = . 

Since body mass varies from empty-load to 
full-load within a wide range, it is a significant 
uncertain parameter for suspension characteristics. 

Because of the non-linearity of suspension spring and 
actuator friction, the variations of spring stiffness and 
damping coefficient also need to be considered. Due 
to the change of temperature and pressure, tire 
stiffness is assumed to be uncertain. In addition, the 
non-linearity of motor model cannot be neglected, 
e.g. the motor constant may be inaccurate as a result 
of the measurement error, etc. Hence, five main 
uncertain parameters are selected in a range of 
practical variations around their nominal values, 
respectively, 

( )1b b mb mbm m d δ= +  

( )1s s ks ksK K d δ= +  

( )1t t kt ktK K d δ= +  
( )1f f cf cfC C d δ= +  

( )1 d δΦ ΦΦ = Φ +  
where 0.2mbd = , 0.2ksd = , 0.1ktd = , 0.2cfd = , 

0.2dΦ = , , , , , 1mb ks kt cfδ δ δ δ δΦ ≤ . The 
scalars, denoted as d , represent the percentages of 
variation around the nominal values and indicate the 
degree of parameter uncertainty. And δ  represents 
the norm of the actual parameter deviation. The 
symbols , , , ,b s t fm K K C Φ , respectively refer to the 
above 5 uncertain parameters and , , , ,b s t fm K K C Φ  
are defined as corresponding nominal parameters. 

All uncertainty parameters can be written in the 
form of lower Linear Fractional Transformation 
(LFT), which is necessary for structure uncertainty 
analysis. The LFT representations are expressed as 
follows: 

( )
( ) ( )

( )

1

1

1

, ,

b w d w d

mb mb

l mb l mb mb

m m I m I

F F M

β α δ α δ β

β α
δ δ

β α

−

+ +

= + − ⎡ − − ⎤⎣ ⎦
⎛ ⎞−⎡ ⎤

= =⎜ ⎟⎢ ⎥−⎣ ⎦⎝ ⎠

   (10) 

( )

( )

1

, ,
0

s s ks ks

s ks
l ks l ks ks

s

K K d

K d
F F M

K

δ

δ δ

= +

⎛ ⎞⎡ ⎤
= =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

  (11) 

( )

( )

1

, ,
0

t t kt kt

t kt
l kt l kt kt

t

K K d

K d
F F M

K

δ

δ δ

= +

⎛ ⎞⎡ ⎤
= =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

  (12) 

rJ

nJ

,θ ω

,θ ω
mT

oT
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( )

( )

1

, ,
0

f f cf cf

f cf
l cf l cf cf

f

C C d

C d
F F M

C

δ

δ δ

= +

⎛ ⎞⎡ ⎤
= =⎜ ⎟⎢ ⎥⎜ ⎟⎣ ⎦⎝ ⎠

  (13) 

( )

(1 )

, ,
0

l l

d

d
F F M

δ

δ δ

Φ Φ

Φ
Φ Φ Φ

Φ = Φ +

⎛ ⎞⎡ ⎤Φ
= =⎜ ⎟⎢ ⎥⎜ ⎟Φ⎣ ⎦⎝ ⎠

   (14) 

in which 
1 2

b mb

b

m d
m

α
γ γ

=
+

, 1

1 2bm
γβ
γ γ

=
+

. 

( )( ), , , ,j j mb ks kt cfδ ∈ Φ  represents the 
uncertainty which can be extracted from the 
differential equations by the LFT representation. 
Define that [ ]1 2     T

mb mb ks kt cfp p p p p p pΦ= and 

[ ]1 2     T
mb mb ks kt cfq q q q q q qΦ=  are the inputs and 

outputs of jδ  blocks, respectively.  
According to equations (8)~(14), the system 

block diagram with uncertain parameters can be 
obtained in Fig.4. 

Three necessary suspension performances are 
chosen, i.e. body acceleration (BA), suspension 
working space (SWS) and dynamic tire deflection 
(DTD), as the performance outputs 

[ ] [ ]1 2 3  BA SWS DTDT T
pz z z z= = . The measured 

outputs are obtained by two linear potentiometers, 
whose voltages are given by 

[ ] [ ]1 2 m m BA  SWST Ty y y= = . 1α and 2α  are the 
gains of accelerometer and displacement meter, 
respectively. By defining the state vector and input 
vector respectively as [ ]   T

b b w wX x x x x=  and 

[ ]1  T
gu x n i= , where  [ ]1 2

Tn n n=  are two noises 
of y, respectively, the corresponding differential 
equations of the above uncertain model can be 
expressed as below: 

( ) ( )
( ) 1

b w s b w w f b w

w d t w g mb

w ks ks d kt kt w cf cf

w

x m K x x m C x x

m i I K x x p
m d p I d p m d p
m d p

β β

β β α
β β β
β Φ Φ

= − − − −

+ Φ − − −

− − −
+

  (15) 

( ) ( ) ( )
( ) ( )
( )

( )
( )
( )

1 1 2

1 1 2

2 1 1 2

1 1 2

1 1 2

1 1 2

w s b w f b w

d t w g

mb ks ks

d kt kt

cf cf

x K x x C x x

i I K x x

p d p

I d p

d p

d p

γ βγ γ

γ βγ γ β

α γ βγ γ

γ βγ γ β

γ βγ γ

γ βγ γ Φ Φ

⎡= − − + −⎣
⎤−Φ + − + − −⎦

− + −

+ − + −

+ −

+ − +

 (16) 

bx

ktδ

ktM
ktpktq

δΦ

MΦ
i

pΦqΦ

cfδ

cfM
cfp

cfq

∫ ∫
bx bx

++ −

+
b wx x− −

wm

dI
w gx x−

−−
−b wx x−

+

+−

−
+

wx
∫ ∫

wx wx

+ gx−

1 2γ γ

+

δks

ksM
kspksq

1γ

1 2 dIγ γ −

1α

2α

1z

2z
2y

3z

mbδ

mbM
1mbp 1mbq

mbδ

mbM

2mbp 2mbq

+

+

1y1n

2n

 
Fig.4 Control block diagram of suspension system 
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( ) ( )
( )

1

1

mb w s b w w f b w

w d t w g mb

w ks ks d kt kt w cf cf

w

q m K x x m C x x

m i I K x x p
m d p I d p m d p
m d p

β β

β β α
β β β
β Φ Φ

= − − − −

+ Φ − − −

− − −
+

 (17) 

( ) ( )
( ) ( )

( )

2 1 2

1 2 2

1 2 1 2

1 2 1 2

mb s b w f b w

d t w g mb

ks ks d kt kt

cf cf

q K x x C x x

i I K x x p

d p I d p
d p d p

βγ γ

β γ γ α

βγ γ β γ γ
βγ γ βγ γ Φ Φ

⎡= − − + −⎣
⎤−Φ + − − −⎦

− + −

− +
 

(18) 

( )ks s b wq K x x= −        (19) 

( )kt t w gq K x x= −        (20) 

( )cf f b wq C x x= −        (21) 

q iΦ = Φ          (22) 

( ) ( )
( )

1

1

b w s b w w f b w

w d t w g mb

w ks ks d kt kt w cf cf

w

z x m K x x m C x x

m i I K x x p
m d p I d p m d p
m d p

β β

β β α
β β β
β Φ Φ

= = − − − −

+ Φ − − −

− − −
+

 (23) 

2 b wz x x= −         (24) 
3 w gz x x= −         (25) 
1 1 by xα=         (26) 

( )2 2 b wy x xα= −        (27) 
Thus, the perturbed suspension model with 

measurement noises is summarized as 
1 2

1 2

1 2
1 1

1 2

p

q qp q q
susn

z zp z zp

y yp y y

A B B BX
X X

C D D Dq
p G p

C D D Dz
u u

C D D Dy

⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦ ⎣ ⎦⎢ ⎥ ⎣ ⎦⎣ ⎦

 (28) 

The model susnG  is a ten-input, eleven-output 
system as shown in Fig.5 and the above matrices are 
given in APPENDIX. The input/output relation of 

susnG  can be described by the upper LFT, i.e., 

( ) 1,p
u susn p

z
F G u

y
⎡ ⎤

= Δ⎢ ⎥
⎣ ⎦

    (29) 

with the diagonal parameter uncertain matrix 
[ ]2diag , , , , : , 1p mb ks kt cf i iIδ δ δ δ δ δ δΦΔ = ∈ ≤ . 

susnG

p

pz
y

gx

i

pΔ q

n

 
Fig.5 Perturbed suspension model with measurement 

noises 

2.3 Motor Electrical Model  
The electrical model of the three-phase permanent- 
magnet brushless DC motor can be simplified as a 
classic RL-circuit [21] as depicted in Fig.6.  

batV

M

bemfV

R L

actV

i

 
Fig.6 Simplified circuit diagram of DC motor 
The back electromotive force bemfV  of motor is 

proportional to the angular velocity as follows: 

 
2 E

bemf E s
l

KV K v
P
πω= =    (30) 

in which EK  is voltage constant of motor. 
The battery voltage batV  can be adjusted to 

realize the necessary control current i  and the 
voltage on the equivalent resistance and equivalent 
inductance actV can be obtained as follows: 

 act bat bemf
diV V V L Ri
dt

= − = +     (31) 

The nominal transfer function of electrical 
motor model is considered as a first-order, phase-lag 
model, i.e., 

( ) ( )
( )

1
1

mc
m

act mc

i s KG s
V s Ls R T s

= = =
+ +

   (32) 

where 1mcK R=  and mcT L R= . 
Assume that the gain coefficient mcK  varies 

with relative error 10% around its nominal value and 
the time constant mcT  with relative error 20%. In 
order to account for unmodeled dynamics of motor, 
the uncertainty is approximated by the input 
multiplicative uncertainty caused by the perturbed 
transfer functions as below: 

( ) ( ) ( )1m m m mG s W G sδ= +     (33) 
where , 1m mδ δ∈ ≤  and the uncertainty 
weighting function mW  is chosen to satisfy the 
following inequality: 

( ) ( )
( )

( )
m m

m
m

G j G j
W j

G j

ω ω
ω

ω

−
<

    
(34) 

Considering the influence of the variations of 
mcK  and mcT , mW  is obtained as follows: 

0.381 36.6466
359.4713

m
sW

s
+

=
+

. 

Due to writing simplicity, actV  is substituted by 
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u , the block diagram of electrical model with the 
input multiplicative uncertainty is described by 
equation (35) as shown in Fig.7. 

( , )u mp mi F G uδ=       (35) 

i

mδmW

mG
u

i

mδ

mpGu

⇒

 
Fig.7 Block diagram of perturbed motor electrical 

model 
 
2.4 Augmented System Model 
Combining suspension model with motor model, the 
block diagram of entire system can be obtained as 
shown in Fig.8, in which mδ is a complex uncertainty 
and pΔ are real uncertainties. In order to limit the 
control voltage within a required range, u  is added 
to the output vector as a performance index. The 
blocks in the dashed-line frame can be integrated into 

sysG , and the entire perturbed suspension system can 
be described by equation (36), as shown in Fig.9, 

( ),
g

u sys

x
z

F G n
y

u

⎡ ⎤
⎡ ⎤ ⎢ ⎥= Δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

     (36) 

where [ ] T
p uz z z= represents the performance 

outputs including suspension performances pz and 
control input uz u= and the diagonal uncertainty 
matrix becomes [ ]diag ,p mδΔ = Δ .  

susnG p

u

z
z

z
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

yi

n

pΔ

gx

mδ

mpGu

⎫
⎬
⎭

p q

mp mq

sysG

 
Fig.8 Block diagram of entire system with 

uncertainties 

sysG

m

p
p

⎡ ⎤
⎢ ⎥
⎣ ⎦

z

y

gx

u

n

Δ

m

q
q
⎡ ⎤
⎢ ⎥
⎣ ⎦

 
Fig.9 LFT representation of entire system with 

uncertainties 
The closed-loop augmented model, which 

includes the entire system, the feedback structure, the 
weighting functions and the controller, as well as the 
model uncertainties and the performance objectives, 
is depicted in Fig.10. In the diagram, [ ]Td w n=  
are the inputs of perturbation. The control aim is to 
reduce ∞ norm of the transfer function matrices from 
d  to z , for all possible uncertainty matrices 

: 1
∞

Δ Δ < . The weighting functions iW and nW  
represent frequency domain models of disturbance 
w  and noises n , respectively, and the weighting 
functions pW and ucW  are the performance outputs. 
The dashed-line rectangle represents the augmented 
model P . 

sysG z
gx

d

Δ

0
0

i

n

W
W

⎡ ⎤
⎢ ⎥
⎣ ⎦

0
0

p

uc

W
W

⎡ ⎤
⎢ ⎥
⎣ ⎦

n

K

z

P

 
Fig.10 Closed-loop augmented system 

 
3 μ synthesis of augmented system 
The closed-loop augmented system in Fig.10 is a 
standard robust design problem. P and K are 
interconnected by lower LFT to form a matrix as 
below: 

( ) 11 12

21 22
,l

M M
M F P K

M M
⎡ ⎤

= = ⎢ ⎥
⎣ ⎦

   (37) 

with respect to the uncertainty set Δ  and a fictitious 
uncertainty block fΔ , which is called the 
performance uncertainty block with 1f ∞

Δ ≤  as 
shown in Fig.11. 
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zd

Δ

M

fΔ
 

Fig.11 Standard M −Δ  configuration with fΔ  
analysis 

The nominal performance transfer function can 
be derived as 22z M d= , so the nominal 
performance requirement can be obtained as: 

22 1M
∞
<

     
(38) 

Necessary and sufficient conditions for robust 
stability and robust performance can be formulated in 
terms of the structured singular value denoted as μ. 
In order to guarantee the robust stability of the 
perturbed system, it is required that  

( )( )11μ 1M sΔ <     (39) 

in which ( )( ) ( )( )11 11μ : supμM s M j
ω

ωΔ Δ
∈

=  . 

The perturbed performance transfer function 
can be derived that 

( ) ( )22 21 11 12 ,uz M M I M M d F M d= ⎡ + Δ − Δ ⎤ = Δ⎣ ⎦   
Thus, the perturbed performance requirement 

can be set as 
( ), 1uF M

∞
Δ <     (40) 

The inequality (40) is equivalent to the system 
loop in Fig.11 to be robustly stable with respect to 

fΔ . Hence, robust performance can be equivalently 
considered as a robust stabilization problem with 
respect to a structured uncertainty [ ]diag , fΔ = Δ Δ ,

 
1

∞
Δ ≤ . The robust performance can be guaranteed 

by the necessary and sufficient condition as 
( )( )μ 1M sΔ <

   
(41) 

where ( )( ) ( )( )μ : supμM s M j
ω

ωΔ Δ
∈

= . 

Based on the above μ analysis, the μ synthesis 
problem for the augmented model is to find a linear, 
output controller K to generate an output feedback to 
ensure the inequalities (38), (39) and (41). Or, 
equivalently, the objective is solve for K 

 ( )( )supμ , 1M P K j
ω

ωΔ
∈

⎡ ⎤ <⎣ ⎦   (42) 

The D-K iteration μ synthesis method [10] is 
used to solve (42). The method is based on solving 
the following optimization problem, for a stabilizing 

controller K and a diagonal constant scaling matrix 
D, 

 ( )1inf sup inf
K D

DMD j
ω

σ ω−

∈∈
⎡ ⎤⎣ ⎦D

   (43) 

where the scaling matrix setD is defined as 
[ ]1 2 3 4 5 1 1 2

2 2 1 1 1 1 1 1
1 2 3 4

1 1 1 1 3 4
5 1 1 2

diag , , , , , , :

: , , , ,
, 0, 0, ,i i

D D D D D D d I I

D D D D
D D D d I I I I

× × × ×

× ∗ × ×

⎧ ⎫=
⎪ ⎪⎪ ⎪∈ ∈ ∈ ∈⎨ ⎬
⎪ ⎪∈ = > > = =⎪ ⎪⎩ ⎭

D

. 
Corresponding to inequality (42), the 

stabilizing controller is to be found such that  
( )1sup inf 1

D
DMD j

ω
σ ω−

∈∈
⎡ ⎤ <⎣ ⎦D

   (44) 

The D-K iteration method is to reduce the 
left-hand-side value of (44), for K and D in turn 
while keeping the other one fixed. 

The D-K iteration algorithm is as follows: 
Step 1: start with an initial guess for D, usually set 
D=I. 
Step 2: fix D and solve the H∞ optimization for K,

( )( )1arg inf , ,l l
K

K F DF P K D K−

∞
= . 

Step 3: fix K and solve the following convex 
optimization problem for D at each frequency over a 
selected frequency range, 
( ) ( ) ( )1arg inf ,l

D
D j DF P K D jω σ ω−

∈
⎡ ⎤= ⎣ ⎦D

. 

Step 4: curve fit ( )D jω to get a stable , 
minimum-phase ( )D s ; go to Step 2 and repeat, 
until inequality (44) is satisfied. 

In this study, an H∞ synthesis controller is also 
designed concerning the nominal augmented system 
to compare with the μ synthesis controller. 
According to the ISO 2631-3, human sensitivity to 
vibrations is frequency-dependent. The weighting 
functions are chosen to improve the suspension 
performances in this frequency range. The weighting 
functions of both μ synthesis and H∞ synthesis are 
determined as follows: 

0.1iW = , 3 3diag[10 ,10 ]nW − −= , 0.0012ucW = , 
1 2 3diag[ , , ]p z z zW W W W=  

where 
5

21

2 99.4 14431.9
3364.8 7

5.3 10
20.9

z
s s
s s

W − + +
+ +

= × , 

2

2 2

471.6 7245.1
699.2 1854.3

z
s sW
s s
+ +

=
+ +

, 

2

3 2

2 247.7 19411.2
1.1 157.7 293.8

z
s sW

s s
+ +

=
+ +

 . 

 
 

WSEAS TRANSACTIONS on SYSTEMS Yongchao Zhang, Guoguang Zhang, Fan Yu

E-ISSN: 2224-2678 179 Issue 5, Volume 11, May 2012



4 Simulation results 
The simulations for the designed μ synthesis 
controller and H∞ synthesis controller have been 
carried out in MATLAB. The nominal parameters of 
suspension and motor are chosen based on the 
practical case for a single real wheel of a small 
saloon car and shown in Table 1 below. The damping 
coefficient Cp of passive suspension is 2083N s/m⋅
and the other parameters of passive suspension are 
the same as those of active suspension.  
 

Table 1 Nominal parameters of active suspension 
system 

Symbol Value Symbol Value 
bm  255.5 TK  0.1518 
wm  24.5 EK  0.1518 
sK  33984 Φ  47.69 
tK  206450 lP  0.02 
fC  200 R  1.2 
rJ  0.15  L  0.004  
nJ  0.1  1α  0.0204 

dI  2.4674 2α  10 
 
4.1 Frequency responses of the closed-loop 
nominal model 
The frequency responses of the closed-loop nominal 
suspension model are illustrated in Fig.12. Based on 
ISO2361 of human response to vibration, the 
sensitive frequency range, i.e., 4-8 Hz (25-50 rad/s), 
is chosen to evaluate the designed suspension with 
both μ and H∞ synthesis controllers. From Fig.12, it 
is obvious that BA has been decreased greatly for 
two active suspensions, which implies that ride 
comfort can be improved significantly compared 
with passive suspension. Furthermore, H∞ synthesis 
controller achieves slightly less BA than μ synthesis 
controller in the sensitive frequency range. The price 
of better ride comfort is that two controllers has a 
high gain of SWS in the wheel-hop frequency and 
low frequency under 10 rad/s.  

Fig.13 shows the nominal performance of two 
controllers, which can be quantified by ∞-norm of 
z d . It is clear that ∞-norm of the H∞ synthesis 
controller is a bit lower, which implies that its 
nominal performance is a little better than that of the 
μ synthesis controller. The reason of this conclusion 
is that the H∞ synthesis controller is designed for the 
nominal system without perturbations, while the 
design of μ synthesis controller takes robust 
performance of the perturbed system into account, 
consequently, leading to the cost of nominal 

performance.  

 

 
Fig.12 Frequency response of closed-loop nominal 

model 

 
Fig.13 ∞-norm of H∞  and μ controller 

 
4.2 Time responses of the closed-loop nominal 
model 
In order to test the validity of the designed controllers, 
a set of simulations in time domain is conducted on 
random road profile based on the closed-loop 
nominal model. The road condition is that vehicle is 
driven on the C-class road whose roughness 
coefficient is 6 3256 10 m /cycle−×  at the cruising 
speed of 20m/s. Fig.14 compares the 
root-mean-square (RMS) values of suspension 
performances of both passive and active suspensions. 
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It can be seen that BA has been reduced 39.81% and 
44.46% by μ synthesis controller and H∞ synthesis 
controller respectively, compared with passive 
suspension. Since the random road input is subject 
to Gaussian distribution, the performance outputs 
obey a Gaussian distribution for the linear system, 
which implies that the target RMS values are limited 
in one third of the maximum values. SWS is 
designed for the limitation of ±0.053m, indicating 
that SWSrms value cannot exceed 0.0177m. Although 
SWS of active suspension is increased up to 37.5% 
compared with passive suspension as shown in 
Fig.14(b), SWSrms is limited still in the required 
range.  

 
(a) BArms(m/s2) 

 
(b) SWSrms(m) 

 
(c) DTDrms(m) 

Fig.14 RMS values of suspension performances on 
random road profile 

 
4.3 μ analysis of robust stability and robust 
performance 
Based on inequality (39) and (41), the structured 
singular value μ of two controllers are calculated to 

evaluate robust stability and robust performance of 
the perturbed system. The upper and lower bounds of 

( )11μ MΔ  and ( )μ MΔ with H∞ synthesis controller 
are shown in Fig.15. Since the maximum values of 

( )11μ MΔ  and ( )μ MΔ  are larger than 1, it can be 
concluded that robust stability and robust 
performance of H∞ synthesis controller cannot be 
guaranteed.  

Fig.16 illustrates the upper and lower bounds of 
( )11μ MΔ  and ( )μ MΔ with μ synthesis controller. 

The maximum value of ( )11μ MΔ  is only 0.33, 
indicating that robust stability is achieved, i.e., the 
system stability is preserved for 1 0.33

∞
Δ < . The 

maximum value of ( )μ MΔ in the robust 
performance analysis is 0.97, which can ensure the 
robust performance.  

Overall, H∞ synthesis controller simply focuses 
on the nominal model, causing the price of robust 
performance, while μ synthesis controller can meet 
the requirement of robust performance.  

 
(a) Robust stability 

 
(b) Robust performance 

Fig.15 Robust stability and robust performance of H∞ 
synthesis controller 
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(a) Robust stability 

 
(b) Robust performance 

Fig.16 Robust stability and robust performance of μ 
synthesis controller 

4.4 Analysis of sensitive uncertainties 
To further illustrate the advantages of μ synthesis 
controller in robust properties, it is necessary to 
investigate the effects of five uncertain parameters 
and unmodeled dynamics on the frequency responses 

of the perturbed systems. Fig.17 shows the frequency 
responses of the perturbed systems with mb 
variations. Similarly, Fig.18~Fig.22 shows the 
frequency responses with Ks, Kt, Cf, Φ variations and 
unmodeled dynamics, respectively. Note that these 
frequency responses are obtained by assuming that 
one parameter varies while other variable parameters 
are frozen. 

It can be seen that the curves of frequency 
responses of BA fluctuate more violently in Fig.17 
and Fig.22, which implies that bm  and the 
unmodeled dynamics are the sensitive factors of ride 
comfort. Moreover, the curves of SWS in low 
frequency fluctuate more violently in Fig.21 and 
Fig.22, indicating that SWS is sensitive to the 
changes of Φ  and the unmodeled dynamics. Hence, 
it is obvious that bm ,Φ  and unmodeled dynamics 
are the sensitive factors which can influence 
significantly on the suspension performances. 
Especially, since the unmodeled dynamics have a 
direct impact on the active control force, it could be 
the most important factors in these three sensitive 
factors.  

Additionally, since the curve clusters of the μ 
synthesis controller are more intensive than those of 
the H∞ synthesis controller, it is concluded that the μ 
synthesis controller has better robustness than the H∞ 
synthesis controller, which also verify better robust 
performance of the μ synthesis controller. 

 
Fig.17 Frequency responses of the perturbed systems with bm  variations 

 
Fig.18 Frequency responses of the perturbed systems with sK  variations 
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Fig.19 Frequency responses of the perturbed systems with tK  variations 

 
Fig.20 Frequency responses of the perturbed systems with fC  variations 

 
Fig.21 Frequency responses of the perturbed systems with Φ  variations 

 
Fig.22 Frequency responses of the perturbed systems with the unmodeled dynamics

5 Conclusions 
This paper builds an uncertain model for an active 
electrical vehicle suspension system taking 
parameter uncertainties and high-order unmodeled 
dynamics of suspension and motor actuator into 
consideration, and then proposes a mixed μ 
synthesis controller based on D-K iteration method 
to meet the requirement of robust stability and 
robust performance. In order to examine the 
feasibility and effectiveness of the proposed 
controller, simulations are carried out. For 

comparison purpose, an H∞ synthesis controller is 
designed as well. The frequency and time responses 
show that comparing with passive suspension, the 
designed μ synthesis controller achieves the 
significant improvement of ride comfort, while it is 
slightly worse than the H∞ synthesis controller in the 
sensitive frequency range. Furthermore, robust 
stability and robust performance of the perturbed 
system are tested by μ analysis. The results indicate 
that the μ synthesis controller is superior to the H∞ 
synthesis controller in robust performance. Finally, 
the sensitiveness of uncertainties is demonstrated, 
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showing that bm , Φ and unmodeled dynamics are 
sensitive factors compared with sK , tK  and fC . 

Future research work will be conducted on the 
performance comparisons between motor actuator 
and other suspension actuators, e.g., 
electrohydraulic actuator. 
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Appendix 
Notation 
Symbol Description Symbol Description 
BA  Body acceleration, 2m/s  wm  Wheel mass, kg  

fC  Equivalent damping coefficient, N s/m⋅ lP  Lead of ball screw, m  
pC  Passive damping coefficient, N s/m⋅  R  Resistance, Ω  

DTD Dynamic tire displacement, m  SWS  Suspension working space, m  
i  Motor current, A  mT  Motor output torque, N m⋅  

dI  Equivalent inertia, kg  mcT Time constant of motor 
nJ  Moment of inertia of nut, 2kg cm⋅  oT  Actual total output torque, N m⋅  
rJ  Moment of inertia of rotor, 2kg cm⋅  bemfV  Back electromotive force, V  
EK  Voltage constant of motor, V s/rad⋅  batV  Battery voltage, V  
mcK  Gain coefficient of motor Φ  Motor constant, N/A  
sK  Suspension stiffness, N/m  1α Gain of accelerometer, 2V s /m⋅  
tK  Tire stiffness, N/m  2α  Gain of displacement meter, V/m  
TK  Torque constant of motor, N m/A⋅  θ  Rotation angle, rad  

L  Inductance, H  ω  Angular velocity, rad/s  
bm  Body mass, kg    
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